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COMMENT 

Isospectral Hamiltonians: generation of the soliton profile 

C N Kumar 
Institute of Physics, Sachivalaya Marg. Bhubaneswar, 75 1005, India 

Received 31 March 1987 

Abstract. The idea of generating a family of isospectral Hamiltonians from a given 
Hamiltonian using supersymmetric quantum mechanics is exploited in constructing the 
’partner’ stability equation for the 44 soliton stability equation. From the ‘partner’ stability 
equation, the soliton profile and the potential that admits the soliton solution are derived. 

The generation of isospectral Hamiltonians using standard methods and via the 
techniques of supersymmetric quantum mechanics is currently receiving much atten- 
tion. The general inequivalence of the two well established procedures of Abraham- 
Moses and Darboux was shown by Luban and Pursey (1986). The procedure of 
Abraham and Moses (1980) allows the construction of continuous families of isospectral 
Hamiltonians, i.e. new Hamiltonians with the same eigenvalue spectrum as that of the 
original Hamiltonian H. The Darboux procedure can be used to generate a one- 
parameter family of new Hamiltonians, all of which have the same eigenvalue spectrum 
as that of the original Hamiltonian except for ( i )  the addition of a new ground state 
whose energy is less than the ground-state energy of H or (ii) the deletion of the 
ground state from the spectrum of H. Both procedures are in  general inequivalent 
except when one considers the case of the deletion of the ground state of the eigenvalue 

of H and reintroducing a new ground state with the same energy (Luban and Pursey 
1986). Pursey ( 1986a) constructed a third procedure of generating isospectral Hamil- 
tonians which is different from the above mentioned procedures. The effect of this 
new procedure on reflection and transmission amplitudes and on norming constants 
for bound states has some interesting physical applications. Pursey (1986b), in a 
continuation of the series of papers, used isometric operators to provide a unified 
theory of these three procedures for generating one-parameter families of isospectral 
Hamiltonians. In another development, Sukumar ( 1985a) constructed families of 
isospectral Hamiltonians using supersymmetric quantum mechanics and  discussed its 
connection with the procedure of Abraham and Moses. Nieto (1984) showed the 
relationship between supersymmetry and the inverse method in quantum mechanics. 
Mielnik (1984) use the factorisation method to generate an isospectral Hamiltonian 
for the harmonic oscillator problem. 

The objective of the mathematical exercise of constructing a set of Hamiltonians 
which have the same eigenvalue spectrum as that of original Hamiltonian, with the 
exception of having an  additional state or the deletion of ground state, from the original 
spectrum has interesting appplications. If the computational methods used for deter- 
mining the eigenvalue spectrum converge less rapidly when applied to the original 
Hamiltonian than when applied to an isospectral partner, it may prove advantageous 
to compute the spectrum of eigenfunctions indirectly. In the context of quarkonium 
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physics the use of isospectral Hamiltonians permits us to modify the bound-state 
eigenfunctions of the system and therefore the values of wavefunction-dependent 
quantities, such as transition amplitudes, without destroying the agreement already 
achieved between the predicted and observed energy spectra (Pursey 1986b). 

In this comment we present an  application of the isospectral Hamiltonian approach 
in soliton physics. Solitons are solutions of non-linear field theories in (1 + 1)  
dimensions which have finite extension and  finite energy density. The stability of the 
soliton is ensured by the occurrence of a zero-energy ground state of the stability 
equation when small oscillations around the soliton are considered (Rajaraman 1982). 
Considering the stability equation as a one-dimensional Schrodinger-like equation for 
a particle in a potential V(x),  we can construct an isospectral partner for it. The 
partner stability equation will have the same energy spectrum as that of original 
equation. Then, as in Christ and Lee (1975), we ‘generate’ the soliton solution and 
hence the potential V ( 4 )  which admits the soliton solution from the partner stability 
equation. 

We consider the following field theory in (1 + 1)  dimensions (Rajaraman 1982): 

~=;(a*4)(ap4)- V ( 4 )  (1) 

V ( 4 )  =4A44-im’42. ( 2 )  

where 

At the classical level this model has two degenerate minima at 4 = * m / J A .  The field 
equation is 

a24 /az2  - v’( 4 )  = o 

4 ( z )  = ( m / d A )  tanh mzld2. 

(3) 

where the prime denotes differentiation WRT 4. The soliton solution of this model is 

(4) 

The corresponding soliton mass is 

The stability equation is 

( -V2-m2+3m2 tanh2mz/J2)1C/, =wf+,. (6) 

Changing variables from z to x = mz/J2 ,  this equation with e, Ef = w f / m 2  becomes 

This is an  exactly solvable problem and admits two bound states followed by scattering 
states. The bound-state solutions are 

eo = 0 ccl0(x) = l /cosh2 x (8) 

e ,  =; Ccll(x) = sinh x/cosh* x, (9) 

The knowledge of the ground-state wavefunction and its energy enables us to factorise 
equation ( 7 ) .  Once the factorisation is done as H = A+A-+ E ~ ,  the energy spectrum 
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of H and its partner HI = A-A'+ are related via supersymmetry as E\"'= 
E ( " + ' ) ( n  = 0, 1 , 2 , .  . . ) (Sukumar 1985b) where E, El are the energy spectra of the 
Hamiltonians H and H I  respectively. Equation (7)  can be written as 

(10) 
1 a' 
2 ax 

H = -- y+ 2 - 3 sech' x = A+A-+ E 

where 

A* = ( ~ / J ~ ) ( * ~ / ~ x + c x ( x ) )  

and 

E = E o .  
d 

d x  
a ( x )  = - In I+!J0 = -2 tanh x 

With = 0, 

V ( x ) = f ( a 2 ( x ) + a ' ( x ) ) = 2 - 3  sech'x. 

The partner Hamiltonian has the form HI = A-A++ eo with 

sech' x 
1 a' 
2 ax2 

H I =  _ -  -+2- 

V'(x) = [ a 2 ( x ) - a ' ( x ) ] / 2 = 2 - s e c h Z  x. 

This has only one bound state, E ;  = i, as expected. At this stage, following Mielnik 
(1984), we ask whether the factorisation H 1 = A - A + + c o  is unique or not. Consider 
that HI = B-B'+ is another factorisation, where 

B' = ( i / J2 ) (*a /ax+p(x ) ) .  

P ( x )  = a ( x )  + 4 ( x ) .  

4 2 ( x ) + 2 ~ ( x ) a ( x ) - 4 ' ( x )  =o.  (12) 

An obvious particular solution is p ( x )  = a ( x ) .  Let the general solution be 

This yields 

Introducing a new function y =  1 /4 ,  one ends up with a first-order linear 
inhomogeneous equation 

y ' + 2 y a + l = O  (13)  
whose general solution is 

y = e x p J  -2a (x )dx[ -1  J ( e x p J 2 a ( x ) d x )  d x + c ]  

where c is a constant. 
With a ( x )  = (d/dx) In (clo, 

or 
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Using $o = sech' x for the 44 soliton which is under consideration, $(x) becomes 

(17) 
sech4 x 

' (X)=(c- tanh x+4tanh3 x ) '  

As long as (c I  > j, C#J is non-singular. Hence we have another factorisation for HI, i.e. 

(18) 

At this stage the above equation offers little new information; however if we construct 
B + B -  it is no longer H but a new Hamiltonian, HN, 

HI = A-A++ E~ = B-B++ E ~ .  

H N  = B+B-+ E ~ =  B-B+- [ B-, B'] + E O  

= HI - [B-, B+]. 

Using [B-, B+] = -ap/ax 

H N  = H'-tap(x)/dx or VN(x)  = V'(x)+ap(x)/ax.  (19) 

H N  is the new Hamiltonian which can be viewed as the SUSY partner of H I .  The 
energy spectrum of H N  will have a new state in addition to HI energy spectrum. The 
identical part in both the spectra can be found from 

H N B + = ( B + B - + E o ) B + = B + ( B - B + + F o ) = B + H I .  (20)  

(LF = B'$,, $: = E + $ , ,  . . . , $: = (21) 

The wavefunctions of H N  have correspondence with the wavefunction of H '  through 

The missing eigenstate can be found from the relation 

B - 4 :  = 0 

(-a/ax+p(X))*: = o  

sech' x 
IC1 > 5. 

= ( c  - tanh x +ftanh3 x )  

By construction the energy of (CION is zero: 

FIN+: = (B+B-+ E ~ ) # :  = 0 since so = 0. 

We call H N  an isospectral partner of H in the sense of having the same energy spectrum 
as that of H. In a sense, non-uniqueness of factorising H has led us to construct one 
more parent Hamiltonian H N  in addition to the original Hamiltonian H. 

Now that the partner stability equation has been constructed according to the 
method of Christ and Lee (1975) it is easy to generate the soliton solution from this 
equation. We use 

* a x )  = d d N ( x ) / d x  ( 2 6 )  
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to obtain the soliton solution 4,”(x) as a function of x, and the field theory is determined 
by 

On integrating equation (26), using equation (24) with c = 1, 

( Y - K ) ’  
In( 4,”(x) = 2 ( K 2  - 1)  [ Y 2  + YK + ( K 2  - 3)] 

3 
( K 2  - 1)[3(K2-4)]”’ 

- 

where Y = tanh x and K is the real root of the cubic equation K 3 - 3 K  + 3  = 0. 
The algebraic complexity of expressing x in terms of 4 in (28), and thus 

V ( 4 ) ( = 4 ( d 4 / d x ) * )  as a function of 4, hinders further study of the structure of the 
potential. 

In the spirit mentioned at the beginning of this comment regarding the application 
of the ‘partner’ soliton, if the presence of soliton excitation in the system relies on the 
small oscillation ‘data’ and not on the structure of the soliton profile, the prescription 
described will be useful for generating a ‘partner’ soliton with the same data. 

I t  is a pleasure to thank Dr A Khare for useful discussions. 

References 

Abraham P B and Moses H E 1980 Phys. Rev. A 22 1333 
Christ N H and Lee T D 1975 Phys. Rev. D 12 1606 
Luban M and Pursey D L 1986 Phys. Rev. D 33 431 
Mielnik B 1984 J .  Math. Phys. 25 3387 
Nieto M M 1984 Phys. Lett. 145B 208 
Pursey D L 1986a Phys. Rev. D 33 1048 
- 1986b Phys. Ret.. D 33 2267 
Rajaraman R 1982 Solitons and Instantons (Amsterdam: North-Holland) 
Sukumar C V 1985a J .  Phys. A:  Math. Gen. 18 2917, 2937 
- 1985b J .  Phvs. A: Math. Gen. 18 L57 


